Open Hardware Opportunities

Windswept & Interesting

Tests in field array tethering for aggregate stability are showing good results. Windswept and interesting, we've learned from the first field trials on the island of Uist. The idea of an isotropic mesh with its inherently stable structure and minimal movement of the kite-like design offers a true hope of grid-scale AWE.

The stability afforded by top nets allows you to support many forms of AWE, high degree of safety reducing the need for certification and insolvency standards.

Single unit Daisy generator
Total airborne mass 1.4kg
Power out @ ground 1200w

Safe & Easy launch and recovery

Appropriate visibility

360 x 180 tether guide for full mesh control from a single post

Tangle resistant torque blades with rigid blades

Mixed array of weathercocking lift with raked in fixed blades

Single skin scalability for rings and lift

Finbox extrusion for harder tidal ring array

Control over netting
Current range energy: 100-200kWhs per month
Variable and scalable from top down to 10kWhs per month

Minimal impact
Many designs with low carbon footprint, physically inherent without control overlays

Ring blades have less tether drag

Aggregate stability in Kangaroo BHE for field array of lifting kites

Mesh position sensing for auto steering (high addressable tethers)

Lift and gen separate

Storage and maintenance access throughout operation. No single point failure risks

Ganged and individual PID options

Ampere efficiency